Toward Data-Driven Surrogates of the Solar Wind with Spherical Fourier Neural Operator (2511.22112v1)
Abstract: The solar wind, a continuous stream of charged particles from the Sun's corona, shapes the heliosphere and impacts space systems near Earth. Variations such as high-speed streams and coronal mass ejections can disrupt satellites, power grids, and communications, making accurate modeling essential for space weather forecasting. While 3D magnetohydrodynamic (MHD) models are used to simulate and investigate these variations in the solar wind, they tend to be computationally expensive, limiting their usefulness in investigating the impacts of boundary condition uncertainty. In this work, we develop a surrogate for steady state solar wind modeling, using a Spherical Fourier Neural Operator (SFNO). We compare our model to a previously developed numerical surrogate for this task called HUX, and we show that the SFNO achieves comparable or better performance across several metrics. Though HUX retains advantages in physical smoothness, this underscores the need for improved evaluation criteria rather than a flaw in SFNO. As a flexible and trainable approach, SFNO enables efficient real-time forecasting and can improve with more data. The source code and more visual results are available at https://github.com/rezmansouri/solarwind-sfno-velocity.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.