Papers
Topics
Authors
Recent
2000 character limit reached

Support Vector Machine Classifier with Rescaled Huberized Pinball Loss (2511.22065v1)

Published 27 Nov 2025 in stat.ML and cs.LG

Abstract: Support vector machines are widely used in machine learning classification tasks, but traditional SVM models suffer from sensitivity to outliers and instability in resampling, which limits their performance in practical applications. To address these issues, this paper proposes a novel rescaled Huberized pinball loss function with asymmetric, non-convex, and smooth properties. Based on this loss function, we develop a corresponding SVM model called RHPSVM (Rescaled Huberized Pinball Loss Support Vector Machine). Theoretical analyses demonstrate that RHPSVM conforms to Bayesian rules, has a strict generalization error bound, a bounded influence function, and controllable optimality conditions, ensuring excellent classification accuracy, outlier insensitivity, and resampling stability. Additionally, RHPSVM can be extended to various advanced SVM variants by adjusting parameters, enhancing its flexibility. We transform the non-convex optimization problem of RHPSVM into a series of convex subproblems using the concave-convex procedure (CCCP) and solve it with the ClipDCD algorithm, which is proven to be convergent. Experimental results on simulated data, UCI datasets, and small-sample crop leaf image classification tasks show that RHPSVM outperforms existing SVM models in both noisy and noise-free scenarios, especially in handling high-dimensional small-sample data.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.