Papers
Topics
Authors
Recent
2000 character limit reached

StreamFlow: Theory, Algorithm, and Implementation for High-Efficiency Rectified Flow Generation (2511.22009v1)

Published 27 Nov 2025 in cs.CV

Abstract: New technologies such as Rectified Flow and Flow Matching have significantly improved the performance of generative models in the past two years, especially in terms of control accuracy, generation quality, and generation efficiency. However, due to some differences in its theory, design, and existing diffusion models, the existing acceleration methods cannot be directly applied to the Rectified Flow model. In this article, we have comprehensively implemented an overall acceleration pipeline from the aspects of theory, design, and reasoning strategies. This pipeline uses new methods such as batch processing with a new velocity field, vectorization of heterogeneous time-step batch processing, and dynamic TensorRT compilation for the new methods to comprehensively accelerate related models based on flow models. Currently, the existing public methods usually achieve an acceleration of 18%, while experiments have proved that our new method can accelerate the 512*512 image generation speed to up to 611%, which is far beyond the current non-generalized acceleration methods.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.