Papers
Topics
Authors
Recent
2000 character limit reached

Modeling Quantum Autoencoder Trainable Kernel for IoT Anomaly Detection (2511.21932v1)

Published 26 Nov 2025 in cs.LG and quant-ph

Abstract: Escalating cyber threats and the high-dimensional complexity of IoT traffic have outpaced classical anomaly detection methods. While deep learning offers improvements, computational bottlenecks limit real-time deployment at scale. We present a quantum autoencoder (QAE) framework that compresses network traffic into discriminative latent representations and employs quantum support vector classification (QSVC) for intrusion detection. Evaluated on three datasets, our approach achieves improved accuracy on ideal simulators and on the IBM Quantum hardware demonstrating practical quantum advantage on current NISQ devices. Crucially, moderate depolarizing noise acts as implicit regularization, stabilizing training and enhancing generalization. This work establishes quantum machine learning as a viable, hardware-ready solution for real-world cybersecurity challenges.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.