Papers
Topics
Authors
Recent
2000 character limit reached

Breaking the Illusion: Consensus-Based Generative Mitigation of Adversarial Illusions in Multi-Modal Embeddings (2511.21893v1)

Published 26 Nov 2025 in cs.LG

Abstract: Multi-modal foundation models align images, text, and other modalities in a shared embedding space but remain vulnerable to adversarial illusions (Zhang et al., 2025), where imperceptible perturbations disrupt cross-modal alignment and mislead downstream tasks. To counteract the effects of adversarial illusions, we propose a task-agnostic mitigation mechanism that reconstructs the input from the attacker's perturbed input through generative models, e.g., Variational Autoencoders (VAEs), to maintain natural alignment. To further enhance our proposed defense mechanism, we adopt a generative sampling strategy combined with a consensus-based aggregation scheme over the outcomes of the generated samples. Our experiments on the state-of-the-art multi-modal encoders show that our approach substantially reduces the illusion attack success rates to near-zero and improves cross-modal alignment by 4% (42 to 46) and 11% (32 to 43) in unperturbed and perturbed input settings respectively, providing an effective and model-agnostic defense against adversarial illusions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.