Papers
Topics
Authors
Recent
2000 character limit reached

Exploring Fusion Strategies for Multimodal Vision-Language Systems (2511.21889v1)

Published 26 Nov 2025 in cs.LG

Abstract: Modern machine learning models often combine multiple input streams of data to more accurately capture the information that informs their decisions. In multimodal machine learning, choosing the strategy for fusing data together requires careful consideration of the application's accuracy and latency requirements, as fusing the data at earlier or later stages in the model architecture can lead to performance changes in accuracy and latency. To demonstrate this tradeoff, we investigate different fusion strategies using a hybrid BERT and vision network framework that integrates image and text data. We explore two different vision networks: MobileNetV2 and ViT. We propose three models for each vision network, which fuse data at late, intermediate, and early stages in the architecture. We evaluate the proposed models on the CMU MOSI dataset and benchmark their latency on an NVIDIA Jetson Orin AGX. Our experimental results demonstrate that while late fusion yields the highest accuracy, early fusion offers the lowest inference latency. We describe the three proposed model architectures and discuss the accuracy and latency tradeoffs, concluding that data fusion earlier in the model architecture results in faster inference times at the cost of accuracy.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.