Papers
Topics
Authors
Recent
2000 character limit reached

Improving Score Reliability of Multiple Choice Benchmarks with Consistency Evaluation and Altered Answer Choices (2511.21860v1)

Published 26 Nov 2025 in cs.CL and cs.AI

Abstract: In this work we present the Consistency-Rebalanced Accuracy (CoRA) metric, improving the reliability of LLM scores computed on multiple choice (MC) benchmarks. Our metric explores the response consistency of the LLMs, taking advantage of synthetically-generated questions with altered answer choices. With two intermediate scores, i.e. Bare-Minimum-Consistency Accuracy (BMCA) and Consistency Index (CI), CoRA is computed by adjusting the multiple-choice question answering (MCQA) scores to better reflect the level of consistency of the LLM. We present evaluations in different benchmarks using diverse LLMs, and not only demonstrate that LLMs can present low response consistency even when they present high MCQA scores, but also that CoRA can successfully scale down the scores of inconsistent models.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.