Papers
Topics
Authors
Recent
2000 character limit reached

BeeRNA: tertiary structure-based RNA inverse folding using Artificial Bee Colony (2511.21781v1)

Published 26 Nov 2025 in q-bio.BM and cs.AI

Abstract: The Ribonucleic Acid (RNA) inverse folding problem, designing nucleotide sequences that fold into specific tertiary structures, is a fundamental computational biology problem with important applications in synthetic biology and bioengineering. The design of complex three-dimensional RNA architectures remains computationally demanding and mostly unresolved, as most existing approaches focus on secondary structures. In order to address tertiary RNA inverse folding, we present BeeRNA, a bio-inspired method that employs the Artificial Bee Colony (ABC) optimization algorithm. Our approach combines base-pair distance filtering with RMSD-based structural assessment using RhoFold for structure prediction, resulting in a two-stage fitness evaluation strategy. To guarantee biologically plausible sequences with balanced GC content, the algorithm takes thermodynamic constraints and adaptive mutation rates into consideration. In this work, we focus primarily on short and medium-length RNAs ($<$ 100 nucleotides), a biologically significant regime that includes microRNAs (miRNAs), aptamers, and ribozymes, where BeeRNA achieves high structural fidelity with practical CPU runtimes. The lightweight, training-free implementation will be publicly released for reproducibility, offering a promising bio-inspired approach for RNA design in therapeutics and biotechnology.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.