Categorical Framework for Quantum-Resistant Zero-Trust AI Security (2511.21768v1)
Abstract: The rapid deployment of AI models necessitates robust, quantum-resistant security, particularly against adversarial threats. Here, we present a novel integration of post-quantum cryptography (PQC) and zero trust architecture (ZTA), formally grounded in category theory, to secure AI model access. Our framework uniquely models cryptographic workflows as morphisms and trust policies as functors, enabling fine-grained, adaptive trust and micro-segmentation for lattice-based PQC primitives. This approach offers enhanced protection against adversarial AI threats. We demonstrate its efficacy through a concrete ESP32-based implementation, validating a crypto-agile transition with quantifiable performance and security improvements, underpinned by categorical proofs for AI security. The implementation achieves significant memory efficiency on ESP32, with the agent utilizing 91.86% and the broker 97.88% of free heap after cryptographic operations, and successfully rejects 100% of unauthorized access attempts with sub-millisecond average latency.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.