Papers
Topics
Authors
Recent
2000 character limit reached

German General Personas: A Survey-Derived Persona Prompt Collection for Population-Aligned LLM Studies (2511.21722v1)

Published 19 Nov 2025 in cs.CL, cs.AI, and cs.CY

Abstract: The use of LLMs for simulating human perspectives via persona prompting is gaining traction in computational social science. However, well-curated, empirically grounded persona collections remain scarce, limiting the accuracy and representativeness of such simulations. Here we introduce the German General Personas (GGP) collection, a comprehensive and representative persona prompt collection built from the German General Social Survey (ALLBUS). The GGP and its persona prompts are designed to be easily plugged into prompts for all types of LLMs and tasks, steering models to generate responses aligned with the underlying German population. We evaluate GGP by prompting various LLMs to simulate survey response distributions across diverse topics, demonstrating that GGP-guided LLMs outperform state-of-the-art classifiers, particularly under data scarcity. Furthermore, we analyze how the representativity and attribute selection within persona prompts affect alignment with population responses. Our findings suggest that GGP provides a potentially valuable resource for research on LLM-based social simulations that enables more systematic explorations of population-aligned persona prompting in NLP and social science research.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.