Papers
Topics
Authors
Recent
2000 character limit reached

Nearly Tight Lower Bounds for Relaxed Locally Decodable Codes via Robust Daisies (2511.21659v1)

Published 26 Nov 2025 in cs.CC, cs.IT, and math.CO

Abstract: We show a nearly optimal lower bound on the length of linear relaxed locally decodable codes (RLDCs). Specifically, we prove that any $q$-query linear RLDC $C\colon {0,1}k \to {0,1}n$ must satisfy $n = k{1+Ω(1/q)}$. This bound closely matches the known upper bound of $n = k{1+O(1/q)}$ by Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (STOC 2004). Our proof introduces the notion of robust daisies, which are relaxed sunflowers with pseudorandom structure, and leverages a new spread lemma to extract dense robust daisies from arbitrary distributions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.