Papers
Topics
Authors
Recent
2000 character limit reached

Mechanistic Interpretability for Transformer-based Time Series Classification (2511.21514v1)

Published 26 Nov 2025 in cs.LG and cs.AI

Abstract: Transformer-based models have become state-of-the-art tools in various machine learning tasks, including time series classification, yet their complexity makes understanding their internal decision-making challenging. Existing explainability methods often focus on input-output attributions, leaving the internal mechanisms largely opaque. This paper addresses this gap by adapting various Mechanistic Interpretability techniques; activation patching, attention saliency, and sparse autoencoders, from NLP to transformer architectures designed explicitly for time series classification. We systematically probe the internal causal roles of individual attention heads and timesteps, revealing causal structures within these models. Through experimentation on a benchmark time series dataset, we construct causal graphs illustrating how information propagates internally, highlighting key attention heads and temporal positions driving correct classifications. Additionally, we demonstrate the potential of sparse autoencoders for uncovering interpretable latent features. Our findings provide both methodological contributions to transformer interpretability and novel insights into the functional mechanics underlying transformer performance in time series classification tasks.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.