Mechanistic Interpretability for Transformer-based Time Series Classification (2511.21514v1)
Abstract: Transformer-based models have become state-of-the-art tools in various machine learning tasks, including time series classification, yet their complexity makes understanding their internal decision-making challenging. Existing explainability methods often focus on input-output attributions, leaving the internal mechanisms largely opaque. This paper addresses this gap by adapting various Mechanistic Interpretability techniques; activation patching, attention saliency, and sparse autoencoders, from NLP to transformer architectures designed explicitly for time series classification. We systematically probe the internal causal roles of individual attention heads and timesteps, revealing causal structures within these models. Through experimentation on a benchmark time series dataset, we construct causal graphs illustrating how information propagates internally, highlighting key attention heads and temporal positions driving correct classifications. Additionally, we demonstrate the potential of sparse autoencoders for uncovering interpretable latent features. Our findings provide both methodological contributions to transformer interpretability and novel insights into the functional mechanics underlying transformer performance in time series classification tasks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.