Papers
Topics
Authors
Recent
2000 character limit reached

Hierarchical Ranking Neural Network for Long Document Readability Assessment (2511.21473v1)

Published 26 Nov 2025 in cs.CL and cs.AI

Abstract: Readability assessment aims to evaluate the reading difficulty of a text. In recent years, while deep learning technology has been gradually applied to readability assessment, most approaches fail to consider either the length of the text or the ordinal relationship of readability labels. This paper proposes a bidirectional readability assessment mechanism that captures contextual information to identify regions with rich semantic information in the text, thereby predicting the readability level of individual sentences. These sentence-level labels are then used to assist in predicting the overall readability level of the document. Additionally, a pairwise sorting algorithm is introduced to model the ordinal relationship between readability levels through label subtraction. Experimental results on Chinese and English datasets demonstrate that the proposed model achieves competitive performance and outperforms other baseline models.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.