Papers
Topics
Authors
Recent
2000 character limit reached

Anomaly Detection with Adaptive and Aggressive Rejection for Contaminated Training Data (2511.21378v1)

Published 26 Nov 2025 in cs.LG and cs.AI

Abstract: Handling contaminated data poses a critical challenge in anomaly detection, as traditional models assume training on purely normal data. Conventional methods mitigate contamination by relying on fixed contamination ratios, but discrepancies between assumed and actual ratios can severely degrade performance, especially in noisy environments where normal and abnormal data distributions overlap. To address these limitations, we propose Adaptive and Aggressive Rejection (AAR), a novel method that dynamically excludes anomalies using a modified z-score and Gaussian mixture model-based thresholds. AAR effectively balances the trade-off between preserving normal data and excluding anomalies by integrating hard and soft rejection strategies. Extensive experiments on two image datasets and thirty tabular datasets demonstrate that AAR outperforms the state-of-the-art method by 0.041 AUROC. By providing a scalable and reliable solution, AAR enhances robustness against contaminated datasets, paving the way for broader real-world applications in domains such as security and healthcare.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.