Papers
Topics
Authors
Recent
2000 character limit reached

HTTM: Head-wise Temporal Token Merging for Faster VGGT (2511.21317v1)

Published 26 Nov 2025 in cs.CV

Abstract: The Visual Geometry Grounded Transformer (VGGT) marks a significant leap forward in 3D scene reconstruction, as it is the first model that directly infers all key 3D attributes (camera poses, depths, and dense geometry) jointly in one pass. However, this joint inference mechanism requires global attention layers that perform all-to-all attention computation on tokens from all views. For reconstruction of large scenes with long-sequence inputs, this causes a significant latency bottleneck. In this paper, we propose head-wise temporal merging (HTTM), a training-free 3D token merging method for accelerating VGGT. Existing merging techniques merge tokens uniformly across different attention heads, resulting in identical tokens in the layers' output, which hinders the model's representational ability. HTTM tackles this problem by merging tokens in multi-head granularity, which preserves the uniqueness of feature tokens after head concatenation. Additionally, this enables HTTM to leverage the spatial locality and temporal correspondence observed at the head level to achieve higher merging ratios with lower merging costs compared to existing methods. Thus, HTTM achieves up to 7x acceleration with negligible performance drops in a GPU-based inference.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.