Papers
Topics
Authors
Recent
2000 character limit reached

Maxitive Donsker-Varadhan Formulation for Possibilistic Variational Inference (2511.21223v1)

Published 26 Nov 2025 in stat.ML and cs.LG

Abstract: Variational inference (VI) is a cornerstone of modern Bayesian learning, enabling approximate inference in complex models that would otherwise be intractable. However, its formulation depends on expectations and divergences defined through high-dimensional integrals, often rendering analytical treatment impossible and necessitating heavy reliance on approximate learning and inference techniques. Possibility theory, an imprecise probability framework, allows to directly model epistemic uncertainty instead of leveraging subjective probabilities. While this framework provides robustness and interpretability under sparse or imprecise information, adapting VI to the possibilistic setting requires rethinking core concepts such as entropy and divergence, which presuppose additivity. In this work, we develop a principled formulation of possibilistic variational inference and apply it to a special class of exponential-family functions, highlighting parallels with their probabilistic counterparts and revealing the distinctive mathematical structures of possibility theory.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 20 likes about this paper.