Papers
Topics
Authors
Recent
2000 character limit reached

From Diffusion to One-Step Generation: A Comparative Study of Flow-Based Models with Application to Image Inpainting (2511.21215v1)

Published 26 Nov 2025 in cs.CV and cs.LG

Abstract: We present a comprehensive comparative study of three generative modeling paradigms: Denoising Diffusion Probabilistic Models (DDPM), Conditional Flow Matching (CFM), and MeanFlow. While DDPM and CFM require iterative sampling, MeanFlow enables direct one-step generation by modeling the average velocity over time intervals. We implement all three methods using a unified TinyUNet architecture (<1.5M parameters) on CIFAR-10, demonstrating that CFM achieves an FID of 24.15 with 50 steps, significantly outperforming DDPM (FID 402.98). MeanFlow achieves FID 29.15 with single-step sampling -- a 50X reduction in inference time. We further extend CFM to image inpainting, implementing mask-guided sampling with four mask types (center, random bbox, irregular, half). Our fine-tuned inpainting model achieves substantial improvements: PSNR increases from 4.95 to 8.57 dB on center masks (+73%), and SSIM improves from 0.289 to 0.418 (+45%), demonstrating the effectiveness of inpainting-aware training.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.