Papers
Topics
Authors
Recent
2000 character limit reached

Towards an Effective Action-Region Tracking Framework for Fine-grained Video Action Recognition (2511.21202v1)

Published 26 Nov 2025 in cs.CV

Abstract: Fine-grained action recognition (FGAR) aims to identify subtle and distinctive differences among fine-grained action categories. However, current recognition methods often capture coarse-grained motion patterns but struggle to identify subtle details in local regions evolving over time. In this work, we introduce the Action-Region Tracking (ART) framework, a novel solution leveraging a query-response mechanism to discover and track the dynamics of distinctive local details, enabling effective distinction of similar actions. Specifically, we propose a region-specific semantic activation module that employs discriminative and text-constrained semantics as queries to capture the most action-related region responses in each video frame, facilitating interaction among spatial and temporal dimensions with corresponding video features. The captured region responses are organized into action tracklets, which characterize region-based action dynamics by linking related responses across video frames in a coherent sequence. The text-constrained queries encode nuanced semantic representations derived from textual descriptions of action labels extracted by language branches within Visual LLMs (VLMs). To optimize the action tracklets, we design a multi-level tracklet contrastive constraint among region responses at spatial and temporal levels, enabling effective discrimination within each frame and correlation between adjacent frames. Additionally, a task-specific fine-tuning mechanism refines textual semantics such that semantic representations encoded by VLMs are preserved while optimized for task preferences. Comprehensive experiments on widely used action recognition benchmarks demonstrate the superiority to previous state-of-the-art baselines.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.