Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Training for Human Video Generation with Entropy-Guided Prioritized Progressive Learning (2511.21136v1)

Published 26 Nov 2025 in cs.CV and cs.AI

Abstract: Human video generation has advanced rapidly with the development of diffusion models, but the high computational cost and substantial memory consumption associated with training these models on high-resolution, multi-frame data pose significant challenges. In this paper, we propose Entropy-Guided Prioritized Progressive Learning (Ent-Prog), an efficient training framework tailored for diffusion models on human video generation. First, we introduce Conditional Entropy Inflation (CEI) to assess the importance of different model components on the target conditional generation task, enabling prioritized training of the most critical components. Second, we introduce an adaptive progressive schedule that adaptively increases computational complexity during training by measuring the convergence efficiency. Ent-Prog reduces both training time and GPU memory consumption while maintaining model performance. Extensive experiments across three datasets, demonstrate the effectiveness of Ent-Prog, achieving up to 2.2$\times$ training speedup and 2.4$\times$ GPU memory reduction without compromising generative performance.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.