Papers
Topics
Authors
Recent
2000 character limit reached

A Unified Understanding of Offline Data Selection and Online Self-refining Generation for Post-training LLMs (2511.21056v1)

Published 26 Nov 2025 in cs.LG, cs.CL, and math.OC

Abstract: Offline data selection and online self-refining generation, which enhance the data quality, are crucial steps in adapting LLMs to specific downstream tasks. We tackle offline data selection and online self-refining generations through an optimization perspective. Specifically, bilevel data selection is used for offline data selection with respect to the validation dataset, and we treat online self-refining generation as a model adaptation step of selecting the model trained on current responses that best fits the validation data. Our framework offers a unified understanding of offline data selection and self-refining generation by assigning a learned data weight to each question and response, either explicitly or implicitly. For the first time, we theoretically demonstrate the effectiveness of the bilevel data selection framework and demonstrate its performance gains over unfiltered direct mixing baselines. By combining offline data with validation-weighted online generations, our method enhances fine-tuning performance. Experiments on quality enhancement and safety-aware LLM fine-tuning validate its effectiveness.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.