Papers
Topics
Authors
Recent
2000 character limit reached

MetaRank: Task-Aware Metric Selection for Model Transferability Estimation (2511.21007v1)

Published 26 Nov 2025 in cs.CV

Abstract: Selecting an appropriate pre-trained source model is a critical, yet computationally expensive, task in transfer learning. Model Transferability Estimation (MTE) methods address this by providing efficient proxy metrics to rank models without full fine-tuning. In practice, the choice of which MTE metric to use is often ad hoc or guided simply by a metric's average historical performance. However, we observe that the effectiveness of MTE metrics is highly task-dependent and no single metric is universally optimal across all target datasets. To address this gap, we introduce MetaRank, a meta-learning framework for automatic, task-aware MTE metric selection. We formulate metric selection as a learning-to-rank problem. Rather than relying on conventional meta-features, MetaRank encodes textual descriptions of both datasets and MTE metrics using a pretrained LLM, embedding them into a shared semantic space. A meta-predictor is then trained offline on diverse meta-tasks to learn the intricate relationship between dataset characteristics and metric mechanisms, optimized with a listwise objective that prioritizes correctly ranking the top-performing metrics. During the subsequent online phase, MetaRank efficiently ranks the candidate MTE metrics for a new, unseen target dataset based on its textual description, enabling practitioners to select the most appropriate metric a priori. Extensive experiments across 11 pretrained models and 11 target datasets demonstrate the strong effectiveness of our approach.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.