Papers
Topics
Authors
Recent
2000 character limit reached

A Dynamic PD-Disaggregation Architecture for Maximizing Goodput in LLM Inference Serving (2511.20982v1)

Published 26 Nov 2025 in cs.DC

Abstract: To meet strict Service-Level Objectives (SLOs),contemporary LLMs decouple the prefill and decoding stages and place them on separate GPUs to mitigate the distinct bottlenecks inherent to each phase. However, the heterogeneity of LLM workloads causes producerconsumer imbalance between the two instance types in such disaggregated architecture. To address this problem, we propose DOPD (Dynamic Optimal Prefill/Decoding), a dynamic LLM inference system that adjusts instance allocations to achieve an optimal prefill-to-decoding (P/D) ratio based on real-time load monitoring. Combined with an appropriate request-scheduling policy, DOPD effectively resolves imbalances between prefill and decoding instances and mitigates resource allocation mismatches due to mixed-length requests under high concurrency. Experimental evaluations show that, compared with vLLM and DistServe (representative aggregation-based and disaggregationbased approaches), DOPD improves overall system goodput by up to 1.5X, decreases P90 time-to-first-token (TTFT) by up to 67.5%, and decreases P90 time-per-output-token (TPOT) by up to 22.8%. Furthermore, our dynamic P/D adjustment technique performs proactive reconfiguration based on historical load, achieving over 99% SLOs attainment while using less additional resources.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.