SpaceX: Exploring metrics with the SPACE model for developer productivity (2511.20955v1)
Abstract: This empirical investigation elucidates the limitations of deterministic, unidimensional productivity heuristics by operationalizing the SPACE framework through extensive repository mining. Utilizing a dataset derived from open-source repositories, the study employs rigorous statistical methodologies including Generalized Linear Mixed Models (GLMM) and RoBERTa-based sentiment classification to synthesize a holistic, multi-faceted productivity metric. Analytical results reveal a statistically significant positive correlation between negative affective states and commit frequency, implying a cycle of iterative remediation driven by frustration. Furthermore, the investigation has demonstrated that analyzing the topology of contributor interactions yields superior fidelity in mapping collaborative dynamics compared to traditional volume-based metrics. Ultimately, this research posits a Composite Productivity Score (CPS) to address the heterogeneity of developer efficacy.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.