Chatty-KG: A Multi-Agent AI System for On-Demand Conversational Question Answering over Knowledge Graphs (2511.20940v1)
Abstract: Conversational Question Answering over Knowledge Graphs (KGs) combines the factual grounding of KG-based QA with the interactive nature of dialogue systems. KGs are widely used in enterprise and domain applications to provide structured, evolving, and reliable knowledge. LLMs enable natural and context-aware conversations, but lack direct access to private and dynamic KGs. Retrieval-augmented generation (RAG) systems can retrieve graph content but often serialize structure, struggle with multi-turn context, and require heavy indexing. Traditional KGQA systems preserve structure but typically support only single-turn QA, incur high latency, and struggle with coreference and context tracking. To address these limitations, we propose Chatty-KG, a modular multi-agent system for conversational QA over KGs. Chatty-KG combines RAG-style retrieval with structured execution by generating SPARQL queries through task-specialized LLM agents. These agents collaborate for contextual interpretation, dialogue tracking, entity and relation linking, and efficient query planning, enabling accurate and low-latency translation of natural questions into executable queries. Experiments on large and diverse KGs show that Chatty-KG significantly outperforms state-of-the-art baselines in both single-turn and multi-turn settings, achieving higher F1 and P@1 scores. Its modular design preserves dialogue coherence and supports evolving KGs without fine-tuning or pre-processing. Evaluations with commercial (e.g., GPT-4o, Gemini-2.0) and open-weight (e.g., Phi-4, Gemma 3) LLMs confirm broad compatibility and stable performance. Overall, Chatty-KG unifies conversational flexibility with structured KG grounding, offering a scalable and extensible approach for reliable multi-turn KGQA.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.