Papers
Topics
Authors
Recent
2000 character limit reached

Supporting Students in Navigating LLM-Generated Insecure Code (2511.20878v1)

Published 25 Nov 2025 in cs.CR

Abstract: The advent of AI, particularly LLMs, has revolutionized software development by enabling developers to specify tasks in natural language and receive corresponding code, boosting productivity. However, this shift also introduces security risks, as LLMs may generate insecure code that can be exploited by adversaries. Current educational approaches emphasize efficiency while overlooking these risks, leaving students underprepared to identify and mitigate security issues in AI-assisted workflows. To address this gap, we present Bifröst, an educational framework that cultivates security awareness in AI-augmented development. Bifröst integrates (1) a Visual Studio Code extension simulating realistic environments, (2) adversarially configured LLMs that generate insecure code, and (3) a feedback system highlighting vulnerabilities. By immersing students in tasks with compromised LLMs and providing targeted security analysis, Bifröst cultivates critical evaluation skills; classroom deployments (n=61) show vulnerability to insecure code, while a post-intervention survey (n=21) indicates increased skepticism toward LLM outputs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.