Papers
Topics
Authors
Recent
2000 character limit reached

Autoregressive Surrogate Modeling of the Solar Wind with Spherical Fourier Neural Operator (2511.20830v1)

Published 25 Nov 2025 in cs.LG

Abstract: The solar wind, a continuous outflow of charged particles from the Sun's corona, shapes the heliosphere and impacts space systems near Earth. Accurate prediction of features such as high-speed streams and coronal mass ejections is critical for space weather forecasting, but traditional three-dimensional magnetohydrodynamic (MHD) models are computationally expensive, limiting rapid exploration of boundary condition uncertainties. We introduce the first autoregressive machine learning surrogate for steady-state solar wind radial velocity using the Spherical Fourier Neural Operator (SFNO). By predicting a limited radial range and iteratively propagating the solution outward, the model improves accuracy in distant regions compared to a single-step approach. Compared with the numerical HUX surrogate, SFNO demonstrates superior or comparable performance while providing a flexible, trainable, and data-driven alternative, establishing a novel methodology for high-fidelity solar wind modeling. The source code and additional visual results are available at https://github.com/rezmansouri/solarwind-sfno-velocity-autoregressive.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.