Papers
Topics
Authors
Recent
2000 character limit reached

PaTAS: A Parallel System for Trust Propagation in Neural Networks Using Subjective Logic (2511.20586v1)

Published 25 Nov 2025 in cs.AI and cs.LG

Abstract: Trustworthiness has become a key requirement for the deployment of artificial intelligence systems in safety-critical applications. Conventional evaluation metrics such as accuracy and precision fail to capture uncertainty or the reliability of model predictions, particularly under adversarial or degraded conditions. This paper introduces the \emph{Parallel Trust Assessment System (PaTAS)}, a framework for modeling and propagating trust in neural networks using Subjective Logic (SL). PaTAS operates in parallel with standard neural computation through \emph{Trust Nodes} and \emph{Trust Functions} that propagate input, parameter, and activation trust across the network. The framework defines a \emph{Parameter Trust Update} mechanism to refine parameter reliability during training and an \emph{Inference-Path Trust Assessment (IPTA)} method to compute instance-specific trust at inference. Experiments on real-world and adversarial datasets demonstrate that PaTAS produces interpretable, symmetric, and convergent trust estimates that complement accuracy and expose reliability gaps in poisoned, biased, or uncertain data scenarios. The results show that PaTAS effectively distinguishes between benign and adversarial inputs and identifies cases where model confidence diverges from actual reliability. By enabling transparent and quantifiable trust reasoning within neural architectures, PaTAS provides a principled foundation for evaluating model reliability across the AI lifecycle.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.