The Text Aphasia Battery (TAB): A Clinically-Grounded Benchmark for Aphasia-Like Deficits in Language Models (2511.20507v1)
Abstract: LLMs have emerged as a candidate "model organism" for human language, offering an unprecedented opportunity to study the computational basis of linguistic disorders like aphasia. However, traditional clinical assessments are ill-suited for LLMs, as they presuppose human-like pragmatic pressures and probe cognitive processes not inherent to artificial architectures. We introduce the Text Aphasia Battery (TAB), a text-only benchmark adapted from the Quick Aphasia Battery (QAB) to assess aphasic-like deficits in LLMs. The TAB comprises four subtests: Connected Text, Word Comprehension, Sentence Comprehension, and Repetition. This paper details the TAB's design, subtests, and scoring criteria. To facilitate large-scale use, we validate an automated evaluation protocol using Gemini 2.5 Flash, which achieves reliability comparable to expert human raters (prevalence-weighted Cohen's kappa = 0.255 for model--consensus agreement vs. 0.286 for human--human agreement). We release TAB as a clinically-grounded, scalable framework for analyzing language deficits in artificial systems.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.