Papers
Topics
Authors
Recent
2000 character limit reached

Metric, inertially aligned monocular state estimation via kinetodynamic priors

Published 25 Nov 2025 in cs.RO | (2511.20496v1)

Abstract: Accurate state estimation for flexible robotic systems poses significant challenges, particular for platforms with dynamically deforming structures that invalidate rigid-body assumptions. This paper tackles this problem and allows to extend existing rigid-body pose estimation methods to non-rigid systems. Our approach hinges on two core assumptions: first, the elastic properties are captured by an injective deformation-force model, efficiently learned via a Multi-Layer Perceptron; second, we solve the platform's inherently smooth motion using continuous-time B-spline kinematic models. By continuously applying Newton's Second Law, our method establishes a physical link between visually-derived trajectory acceleration and predicted deformation-induced acceleration. We demonstrate that our approach not only enables robust and accurate pose estimation on non-rigid platforms, but that the properly modeled platform physics instigate inertial sensing properties. We demonstrate this feasibility on a simple spring-camera system, and show how it robustly resolves the typically ill-posed problem of metric scale and gravity recovery in monocular visual odometry.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.