Papers
Topics
Authors
Recent
2000 character limit reached

Ranking-Enhanced Anomaly Detection Using Active Learning-Assisted Attention Adversarial Dual AutoEncoders (2511.20480v1)

Published 25 Nov 2025 in cs.LG, cs.AI, cs.CR, and cs.NE

Abstract: Advanced Persistent Threats (APTs) pose a significant challenge in cybersecurity due to their stealthy and long-term nature. Modern supervised learning methods require extensive labeled data, which is often scarce in real-world cybersecurity environments. In this paper, we propose an innovative approach that leverages AutoEncoders for unsupervised anomaly detection, augmented by active learning to iteratively improve the detection of APT anomalies. By selectively querying an oracle for labels on uncertain or ambiguous samples, we minimize labeling costs while improving detection rates, enabling the model to improve its detection accuracy with minimal data while reducing the need for extensive manual labeling. We provide a detailed formulation of the proposed Attention Adversarial Dual AutoEncoder-based anomaly detection framework and show how the active learning loop iteratively enhances the model. The framework is evaluated on real-world imbalanced provenance trace databases produced by the DARPA Transparent Computing program, where APT-like attacks constitute as little as 0.004\% of the data. The datasets span multiple operating systems, including Android, Linux, BSD, and Windows, and cover two attack scenarios. The results have shown significant improvements in detection rates during active learning and better performance compared to other existing approaches.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.