Papers
Topics
Authors
Recent
2000 character limit reached

PAC-Bayes Meets Online Contextual Optimization (2511.20413v1)

Published 25 Nov 2025 in math.OC and stat.ML

Abstract: The predict-then-optimize paradigm bridges online learning and contextual optimization in dynamic environments. Previous works have investigated the sequential updating of predictors using feedback from downstream decisions to minimize regret in the full-information settings. However, existing approaches are predominantly frequentist, rely heavily on gradient-based strategies, and employ deterministic predictors that could yield high variance in practice despite their asymptotic guarantees. This work introduces, to the best of our knowledge, the first Bayesian online contextual optimization framework. Grounded in PAC-Bayes theory and general Bayesian updating principles, our framework achieves $\mathcal{O}(\sqrt{T})$ regret for bounded and mixable losses via a Gibbs posterior, eliminates the dependence on gradients through sequential Monte Carlo samplers, and thereby accommodates nondifferentiable problems. Theoretical developments and numerical experiments substantiate our claims.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.