Papers
Topics
Authors
Recent
2000 character limit reached

Nonlinearly preconditioned gradient flows (2511.20370v1)

Published 25 Nov 2025 in math.OC and math.DS

Abstract: We study a continuous-time dynamical system which arises as the limit of a broad class of nonlinearly preconditioned gradient methods. Under mild assumptions, we establish existence of global solutions and derive Lyapunov-based convergence guarantees. For convex costs, we prove a sublinear decay in a geometry induced by some reference function, and under a generalized gradient-dominance condition we obtain exponential convergence. We further uncover a duality connection with mirror descent, and use it to establish that the flow of interest solves an infinite-horizon optimal-control problem of which the value function is the Bregman divergence generated by the cost. These results clarify the structure and optimization behavior of nonlinearly preconditioned gradient flows and connect them to known continuous-time models in non-Euclidean optimization.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.