Papers
Topics
Authors
Recent
2000 character limit reached

Forgetting by Pruning: Data Deletion in Join Cardinality Estimation (2511.20293v1)

Published 25 Nov 2025 in cs.DB, cs.AI, and cs.LG

Abstract: Machine unlearning in learned cardinality estimation (CE) systems presents unique challenges due to the complex distributional dependencies in multi-table relational data. Specifically, data deletion, a core component of machine unlearning, faces three critical challenges in learned CE models: attribute-level sensitivity, inter-table propagation and domain disappearance leading to severe overestimation in multi-way joins. We propose Cardinality Estimation Pruning (CEP), the first unlearning framework specifically designed for multi-table learned CE systems. CEP introduces Distribution Sensitivity Pruning, which constructs semi-join deletion results and computes sensitivity scores to guide parameter pruning, and Domain Pruning, which removes support for value domains entirely eliminated by deletion. We evaluate CEP on state-of-the-art architectures NeuroCard and FACE across IMDB and TPC-H datasets. Results demonstrate CEP consistently achieves the lowest Q-error in multi-table scenarios, particularly under high deletion ratios, often outperforming full retraining. Furthermore, CEP significantly reduces convergence iterations, incurring negligible computational overhead of 0.3%-2.5% of fine-tuning time.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.