Papers
Topics
Authors
Recent
2000 character limit reached

Bootstrapping Physics-Grounded Video Generation through VLM-Guided Iterative Self-Refinement (2511.20280v1)

Published 25 Nov 2025 in cs.CV

Abstract: Recent progress in video generation has led to impressive visual quality, yet current models still struggle to produce results that align with real-world physical principles. To this end, we propose an iterative self-refinement framework that leverages LLMs and vision-LLMs to provide physics-aware guidance for video generation. Specifically, we introduce a multimodal chain-of-thought (MM-CoT) process that refines prompts based on feedback from physical inconsistencies, progressively enhancing generation quality. This method is training-free and plug-and-play, making it readily applicable to a wide range of video generation models. Experiments on the PhyIQ benchmark show that our method improves the Physics-IQ score from 56.31 to 62.38. We hope this work serves as a preliminary exploration of physics-consistent video generation and may offer insights for future research.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.