Papers
Topics
Authors
Recent
Search
2000 character limit reached

CostNav: A Navigation Benchmark for Cost-Aware Evaluation of Embodied Agents

Published 25 Nov 2025 in cs.AI, cs.CE, cs.CV, cs.LG, and cs.RO | (2511.20216v1)

Abstract: Existing navigation benchmarks focus on task success metrics while overlooking economic viability -- critical for commercial deployment of autonomous delivery robots. We introduce \emph{CostNav}, a \textbf{Micro-Navigation Economic Testbed} that evaluates embodied agents through comprehensive cost-revenue analysis aligned with real-world business operations. CostNav models the complete economic lifecycle including hardware, training, energy, maintenance costs, and delivery revenue with service-level agreements, using industry-derived parameters. \textbf{To our knowledge, CostNav is the first work to quantitatively expose the gap between navigation research metrics and commercial viability}, revealing that optimizing for task success fundamentally differs from optimizing for economic deployment. Our cost model uses parameters derived from industry data sources (energy rates, delivery service pricing), and we project from a reduced-scale simulation to realistic deliveries. Under this projection, the baseline achieves 43.0\% SLA compliance but is \emph{not} commercially viable: yielding a loss of \$30.009 per run with no finite break-even point, because operating costs are dominated by collision-induced maintenance, which accounts for 99.7\% of per-run costs and highlights collision avoidance as a key optimization target. We demonstrate a learning-based on-device navigation baseline and establish a foundation for evaluating rule-based navigation, imitation learning, and cost-aware RL training. CostNav bridges the gap between navigation research and commercial deployment, enabling data-driven decisions about economic trade-offs across navigation paradigms.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.