2000 character limit reached
Adaptive SGD with Line-Search and Polyak Stepsizes: Nonconvex Convergence and Accelerated Rates (2511.20207v1)
Published 25 Nov 2025 in math.OC and stat.ML
Abstract: We extend the convergence analysis of AdaSLS and AdaSPS in [Jiang and Stich, 2024] to the nonconvex setting, presenting a unified convergence analysis of stochastic gradient descent with adaptive Armijo line-search (AdaSLS) and Polyak stepsize (AdaSPS) for nonconvex optimization. Our contributions include: (1) an $\mathcal{O}(1/\sqrt{T})$ convergence rate for general nonconvex smooth functions, (2) an $\mathcal{O}(1/T)$ rate under quasar-convexity and interpolation, and (3) an $\mathcal{O}(1/T)$ rate under the strong growth condition for general nonconvex functions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.