Papers
Topics
Authors
Recent
2000 character limit reached

Towards Benign Memory Forgetting for Selective Multimodal Large Language Model Unlearning (2511.20196v1)

Published 25 Nov 2025 in cs.AI

Abstract: Multimodal LLMs (MLLMs) achieve remarkable capabilities but can inadvertently memorize privacy-sensitive information. Although existing unlearning methods can remove such knowledge, they fail to achieve benign forgetting because they often degrade the model's general image understanding performance. To address this, we propose the Sculpted Memory Forgetting Adapter (SMFA), which confines forgetting to targeted memory regions while preserving overall capabilities. SMFA first fine-tunes the model to replace sensitive responses with refusals, yielding a memory forgetting adapter, and then applies a retaining anchor-guided masking mechanism to prevent interference with unrelated knowledge and understanding ability. To systematically evaluate selective MLLM unlearning, we introduce S-MLLMUn Bench, the first benchmark designed to jointly assess the removal of sensitive knowledge and retention of general visual understanding. Extensive experiments show that, unlike prior methods, SMFA achieves precise and controllable unlearning while maintaining the model's foundational image understanding.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.