Mispronunciation Detection and Diagnosis Without Model Training: A Retrieval-Based Approach (2511.20107v1)
Abstract: Mispronunciation Detection and Diagnosis (MDD) is crucial for language learning and speech therapy. Unlike conventional methods that require scoring models or training phoneme-level models, we propose a novel training-free framework that leverages retrieval techniques with a pretrained Automatic Speech Recognition model. Our method avoids phoneme-specific modeling or additional task-specific training, while still achieving accurate detection and diagnosis of pronunciation errors. Experiments on the L2-ARCTIC dataset show that our method achieves a superior F1 score of 69.60% while avoiding the complexity of model training.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.