Papers
Topics
Authors
Recent
2000 character limit reached

Reducing Latency of LLM Search Agent via Speculation-based Algorithm-System Co-Design (2511.20048v1)

Published 25 Nov 2025 in cs.AI, cs.LG, and cs.PF

Abstract: LLM-based search agents achieve strong performance but suffer from severe latency, as each step requires serialized LLM reasoning followed by action of tool execution. We revisit this bottleneck through the lens of speculation. While traditional predict-verify speculation paradigm can break serial execution, its benefit remains limited, as it retains the full original workload and adds extra inference overhead. We observe that early agent steps often involve simple evidence-gathering, where correct actions can often be predicted without full reasoning. Building on these observations, we present SPAgent, an algorithm-system co-design framework that expands the role of speculation in search agents to reduce latency. Algorithmically, SPAgent introduces a two-phase adaptive speculation mechanism that selectively omits verification when safe. System-wise, a two-level scheduler regulates speculative requests based on engine load to ensure speculation remains beneficial. We implement SPAgent in real-world systems. Across extensive experimental settings, SPAgent achieves up to $1.65\times$ end-to-end speedup while maintaining same or even achieving higher accuracy, enabling practical deployment of multi-step search agents.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 8 likes about this paper.