Pedestrian Crossing Intention Prediction Using Multimodal Fusion Network (2511.20008v1)
Abstract: Pedestrian crossing intention prediction is essential for the deployment of autonomous vehicles (AVs) in urban environments. Ideal prediction provides AVs with critical environmental cues, thereby reducing the risk of pedestrian-related collisions. However, the prediction task is challenging due to the diverse nature of pedestrian behavior and its dependence on multiple contextual factors. This paper proposes a multimodal fusion network that leverages seven modality features from both visual and motion branches, aiming to effectively extract and integrate complementary cues across different modalities. Specifically, motion and visual features are extracted from the raw inputs using multiple Transformer-based extraction modules. Depth-guided attention module leverages depth information to guide attention towards salient regions in another modality through comprehensive spatial feature interactions. To account for the varying importance of different modalities and frames, modality attention and temporal attention are designed to selectively emphasize informative modalities and effectively capture temporal dependencies. Extensive experiments on the JAAD dataset validate the effectiveness of the proposed network, achieving superior performance compared to the baseline methods.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.