Papers
Topics
Authors
Recent
2000 character limit reached

Pedestrian Crossing Intention Prediction Using Multimodal Fusion Network (2511.20008v1)

Published 25 Nov 2025 in cs.CV and cs.AI

Abstract: Pedestrian crossing intention prediction is essential for the deployment of autonomous vehicles (AVs) in urban environments. Ideal prediction provides AVs with critical environmental cues, thereby reducing the risk of pedestrian-related collisions. However, the prediction task is challenging due to the diverse nature of pedestrian behavior and its dependence on multiple contextual factors. This paper proposes a multimodal fusion network that leverages seven modality features from both visual and motion branches, aiming to effectively extract and integrate complementary cues across different modalities. Specifically, motion and visual features are extracted from the raw inputs using multiple Transformer-based extraction modules. Depth-guided attention module leverages depth information to guide attention towards salient regions in another modality through comprehensive spatial feature interactions. To account for the varying importance of different modalities and frames, modality attention and temporal attention are designed to selectively emphasize informative modalities and effectively capture temporal dependencies. Extensive experiments on the JAAD dataset validate the effectiveness of the proposed network, achieving superior performance compared to the baseline methods.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.