Papers
Topics
Authors
Recent
2000 character limit reached

$\text{R}^2\text{R}$: A Route-to-Rerank Post-Training Framework for Multi-Domain Decoder-Only Rerankers (2511.19987v1)

Published 25 Nov 2025 in cs.CL and cs.IR

Abstract: Decoder-only rerankers are central to Retrieval-Augmented Generation (RAG). However, generalist models miss domain-specific nuances in high-stakes fields like finance and law, and naive fine-tuning causes surface-form overfitting and catastrophic forgetting. To address this challenge, we introduce R2R, a domain-aware framework that combines dynamic expert routing with a two-stage training strategy, Entity Abstraction for Generalization (EAG). EAG introduces a counter-shortcut mechanism by masking the most predictive surface cues, forcing the reranker to learn domain-invariant relevance patterns rather than memorizing dataset-specific entities. To efficiently activate domain experts, R2R employs a lightweight Latent Semantic Router that probes internal representations from the frozen backbone decoder to select the optimal LoRA expert per query. Extensive experiments across different reranker backbones and diverse domains (legal, medical, and financial) demonstrate that R2R consistently surpasses generalist and single-domain fine-tuned baselines. Our results confirm that R2R is a model-agnostic and modular approach to domain specialization with strong cross-domain robustness.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 9 likes about this paper.