Papers
Topics
Authors
Recent
2000 character limit reached

On-Demand Multi-Task Sparsity for Efficient Large-Model Deployment on Edge Devices (2511.19986v1)

Published 25 Nov 2025 in cs.LG, cs.AI, and cs.CV

Abstract: Sparsity is essential for deploying large models on resource constrained edge platforms. However, optimizing sparsity patterns for individual tasks in isolation ignores the significant I/O overhead incurred during frequent task switching. We introduce an on-demand multi-task sparsity framework specifically designed to minimize switching costs by maximizing parameter reuse. Unlike monolithic approaches, we decompose weights into reusable block-granular units and align sparse structures across tasks to maximize overlap. By dynamically loading only the small differential set of blocks required for the next task, our method effectively mitigates the cold-start latency inherent in traditional monolithic approaches.Experiments on a real-world autonomous driving platform demonstrate that our framework achieves superior switching efficiency, accelerating task switching by over 6.6X on average compared to existing sparsity methods.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.