Papers
Topics
Authors
Recent
2000 character limit reached

One Attention, One Scale: Phase-Aligned Rotary Positional Embeddings for Mixed-Resolution Diffusion Transformer (2511.19778v1)

Published 24 Nov 2025 in cs.CV

Abstract: We identify a core failure mode that occurs when using the usual linear interpolation on rotary positional embeddings (RoPE) for mixed-resolution denoising with Diffusion Transformers. When tokens from different spatial grids are mixed, the attention mechanism collapses. The issue is structural. Linear coordinate remapping forces a single attention head to compare RoPE phases sampled at incompatible rates, creating phase aliasing that destabilizes the score landscape. Pretrained DiTs are especially brittle-many heads exhibit extremely sharp, periodic phase selectivity-so even tiny cross-rate inconsistencies reliably cause blur, artifacts, or full collapse. To this end, our main contribution is Cross-Resolution Phase-Aligned Attention (CRPA), a training-free drop-in fix that eliminates this failure at its source. CRPA modifies only the RoPE index map for each attention call: all Q/K positions are expressed on the query's stride so that equal physical distances always induce identical phase increments. This restores the precise phase patterns that DiTs rely on. CRPA is fully compatible with pretrained DiTs, stabilizes all heads and layers uniformly. We demonstrate that CRPA enables high-fidelity and efficient mixed-resolution generation, outperforming previous state-of-the-art methods on image and video generation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.