Papers
Topics
Authors
Recent
2000 character limit reached

Prompt Fencing: A Cryptographic Approach to Establishing Security Boundaries in Large Language Model Prompts (2511.19727v1)

Published 24 Nov 2025 in cs.CR and cs.AI

Abstract: LLMs remain vulnerable to prompt injection attacks, representing the most significant security threat in production deployments. We present Prompt Fencing, a novel architectural approach that applies cryptographic authentication and data architecture principles to establish explicit security boundaries within LLM prompts. Our approach decorates prompt segments with cryptographically signed metadata including trust ratings and content types, enabling LLMs to distinguish between trusted instructions and untrusted content. While current LLMs lack native fence awareness, we demonstrate that simulated awareness through prompt instructions achieved complete prevention of injection attacks in our experiments, reducing success rates from 86.7% (260/300 successful attacks) to 0% (0/300 successful attacks) across 300 test cases with two leading LLM providers. We implement a proof-of-concept fence generation and verification pipeline with a total overhead of 0.224 seconds (0.130s for fence generation, 0.094s for validation) across 100 samples. Our approach is platform-agnostic and can be incrementally deployed as a security layer above existing LLM infrastructure, with the expectation that future models will be trained with native fence awareness for optimal security.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.