Papers
Topics
Authors
Recent
2000 character limit reached

On the Utility of Foundation Models for Fast MRI: Vision-Language-Guided Image Reconstruction (2511.19641v1)

Published 24 Nov 2025 in cs.CV and cs.AI

Abstract: Purpose: To investigate whether a vision-language foundation model can enhance undersampled MRI reconstruction by providing high-level contextual information beyond conventional priors. Methods: We proposed a semantic distribution-guided reconstruction framework that uses a pre-trained vision-language foundation model to encode both the reconstructed image and auxiliary information into high-level semantic features. A contrastive objective aligns the reconstructed representation with the target semantic distribution, ensuring consistency with high-level perceptual cues. The proposed objective works with various deep learning-based reconstruction methods and can flexibly incorporate semantic priors from multimodal sources. To test the effectiveness of these semantic priors, we evaluated reconstruction results guided by priors derived from either image-only or image-language auxiliary information. Results: Experiments on knee and brain datasets demonstrate that semantic priors from images preserve fine anatomical structures and achieve superior perceptual quality, as reflected in lower LPIPS values, higher Tenengrad scores, and improved scores in the reader study, compared with conventional regularization. The image-language information further expands the semantic distribution and enables high-level control over reconstruction attributes. Across all evaluations, the contrastive objective consistently guided the reconstructed features toward the desired semantic distributions while maintaining data fidelity, demonstrating the effectiveness of the proposed optimization framework. Conclusion: The study highlights that vision-language foundation models can improve undersampled MRI reconstruction through semantic-space optimization.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.