Papers
Topics
Authors
Recent
2000 character limit reached

Blinking Beyond EAR: A Stable Eyelid Angle Metric for Driver Drowsiness Detection and Data Augmentation (2511.19519v1)

Published 24 Nov 2025 in cs.CV, cs.LG, and eess.IV

Abstract: Detecting driver drowsiness reliably is crucial for enhancing road safety and supporting advanced driver assistance systems (ADAS). We introduce the Eyelid Angle (ELA), a novel, reproducible metric of eye openness derived from 3D facial landmarks. Unlike conventional binary eye state estimators or 2D measures, such as the Eye Aspect Ratio (EAR), the ELA provides a stable geometric description of eyelid motion that is robust to variations in camera angle. Using the ELA, we design a blink detection framework that extracts temporal characteristics, including the closing, closed, and reopening durations, which are shown to correlate with drowsiness levels. To address the scarcity and risk of collecting natural drowsiness data, we further leverage ELA signals to animate rigged avatars in Blender 3D, enabling the creation of realistic synthetic datasets with controllable noise, camera viewpoints, and blink dynamics. Experimental results in public driver monitoring datasets demonstrate that the ELA offers lower variance under viewpoint changes compared to EAR and achieves accurate blink detection. At the same time, synthetic augmentation expands the diversity of training data for drowsiness recognition. Our findings highlight the ELA as both a reliable biometric measure and a powerful tool for generating scalable datasets in driver state monitoring.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.