Papers
Topics
Authors
Recent
2000 character limit reached

Beyond Binary Classification: A Semi-supervised Approach to Generalized AI-generated Image Detection

Published 23 Nov 2025 in cs.LG, cs.AI, cs.CR, and cs.CV | (2511.19499v1)

Abstract: The rapid advancement of generators (e.g., StyleGAN, Midjourney, DALL-E) has produced highly realistic synthetic images, posing significant challenges to digital media authenticity. These generators are typically based on a few core architectural families, primarily Generative Adversarial Networks (GANs) and Diffusion Models (DMs). A critical vulnerability in current forensics is the failure of detectors to achieve cross-generator generalization, especially when crossing architectural boundaries (e.g., from GANs to DMs). We hypothesize that this gap stems from fundamental differences in the artifacts produced by these \textbf{distinct architectures}. In this work, we provide a theoretical analysis explaining how the distinct optimization objectives of the GAN and DM architectures lead to different manifold coverage behaviors. We demonstrate that GANs permit partial coverage, often leading to boundary artifacts, while DMs enforce complete coverage, resulting in over-smoothing patterns. Motivated by this analysis, we propose the \textbf{Tri}archy \textbf{Detect}or (TriDetect), a semi-supervised approach that enhances binary classification by discovering latent architectural patterns within the "fake" class. TriDetect employs balanced cluster assignment via the Sinkhorn-Knopp algorithm and a cross-view consistency mechanism, encouraging the model to learn fundamental architectural distincts. We evaluate our approach on two standard benchmarks and three in-the-wild datasets against 13 baselines to demonstrate its generalization capability to unseen generators.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.