Hierarchical Dual-Strategy Unlearning for Biomedical and Healthcare Intelligence Using Imperfect and Privacy-Sensitive Medical Data (2511.19498v1)
Abstract: LLMs exhibit exceptional performance but pose substantial privacy risks due to training data memorization, particularly within healthcare contexts involving imperfect or privacy-sensitive patient information. We present a hierarchical dual-strategy framework for selective knowledge unlearning that precisely removes specialized knowledge while preserving fundamental medical competencies. Our approach synergistically integrates geometric-constrained gradient updates to selectively modulate target parameters with concept-aware token-level interventions that distinguish between preservation-critical and unlearning-targeted tokens via a unified four-level medical concept hierarchy. Comprehensive evaluations on the MedMCQA (surgical) and MHQA (anxiety, depression, trauma) datasets demonstrate superior performance, achieving an 82.7% forgetting rate and 88.5% knowledge preservation. Notably, our framework maintains robust privacy guarantees while requiring modification of only 0.1% of parameters, addressing critical needs for regulatory compliance, auditability, and ethical standards in clinical research.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.