Papers
Topics
Authors
Recent
2000 character limit reached

Quasi-symmetric nets: a constructive approach to the equimodular elliptic type of Kokotsakis polyhedra (2511.19376v1)

Published 24 Nov 2025 in math.MG and cs.CG

Abstract: This work investigates flexible Kokotsakis polyhedra with a quadrangular base of equimodular elliptic type, filling a significant gap in the literature by providing the first explicit constructions of this type together with an explicit algebraic characterization in terms of flat and dihedral angles. A straightforwardly constructible class of polyhedra - called quasi-symmetric nets (QS-nets) - is introduced, characterized by a symmetry relation among flat angles. It is shown that every elliptic QS-net has equimodular elliptic type and is flexible in real three-dimensional Euclidean space (rather than only in complex configuration spaces), except for a few exceptional choices of dihedral angles, and that its flexion admits a closed-form parameterization. Examples are constructed that are non-self-intersecting and belong exclusively to the equimodular elliptic type. To support applications in computational geometry, a numerical pipeline is developed that searches for candidate solutions, verifies them using the explicit algebraic characterization, and constructs and visualizes the resulting polyhedra; numerical validations achieve high precision. Taken together, these results provide constructive criteria, algorithms, and validated examples for the equimodular elliptic type, enabling the design of a broad range of flexible Kokotsakis mechanisms.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.