Papers
Topics
Authors
Recent
2000 character limit reached

POUR: A Provably Optimal Method for Unlearning Representations via Neural Collapse (2511.19339v1)

Published 24 Nov 2025 in cs.CV

Abstract: In computer vision, machine unlearning aims to remove the influence of specific visual concepts or training images without retraining from scratch. Studies show that existing approaches often modify the classifier while leaving internal representations intact, resulting in incomplete forgetting. In this work, we extend the notion of unlearning to the representation level, deriving a three-term interplay between forgetting efficacy, retention fidelity, and class separation. Building on Neural Collapse theory, we show that the orthogonal projection of a simplex Equiangular Tight Frame (ETF) remains an ETF in a lower dimensional space, yielding a provably optimal forgetting operator. We further introduce the Representation Unlearning Score (RUS) to quantify representation-level forgetting and retention fidelity. Building on this, we introduce POUR (Provably Optimal Unlearning of Representations), a geometric projection method with closed-form (POUR-P) and a feature-level unlearning variant under a distillation scheme (POUR-D). Experiments on CIFAR-10/100 and PathMNIST demonstrate that POUR achieves effective unlearning while preserving retained knowledge, outperforming state-of-the-art unlearning methods on both classification-level and representation-level metrics.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.